Data Science and
Big Data in Travel
Industry

“ | aMmaDEUS

Anwar Rizal
Emmanuel Bastien

© 2015 Amadeus IT Group SA



Outline

. Amadeus Travel Intelligence

Data Analytic Tasks

Use Cases
Ae-Commerce Conversion Rate
A Airline Customers Segmentation

Technology Point of View

. Summary and Conclusion

Page 2

dMaDEUS

© 2015 Amadeus IT Group SA



Amadeus Travel Intelligence

dMaDEUS

up SA

© 2015 Ama



o/

Our mission:

nTo provide unique and actionable insight
customers using advanced technologies 0
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Our Customer Segments & Value Chains
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Data Analytic Tasks
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Starting Points

__Start from business requirements

\ )
Aidl want to act when the number oi‘b(
and destination decreaseso
Afdil want to personalize marketing carl
__ Do not start from data
Al have all the |l ogs that record eve
What can we do with them ? n
__ Do not start from data analysis activity
Adl want to cluster my passenger so
Adil want to apply machine | earning t
~ Do not start from technology
Adl know we can solve our business pt

l nserto
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Data Analysis Workflow
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Data Analysis Workflow
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Data Analysis Workflow
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Data Analysis Workflow

shell commands,
visualization for
exploration, Hadoop,
Spark, ETL

i ct
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The Importance of Data Preparation

__The real data:
AAre Incomplete
AAre Buggy

AcCome from different sources, and the guality might vary
depending on those sources

80 % of data analysis efforts are on data preparation
(exploration, cleansing, normalization, data
Imputation, &)

_Understanding the quality of the input Is important in
estimating confidence of the analysis result

l nserto
i cturebod
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Data Analysis Workflow

Data model, OLAP,

Preparation Data Mart SQL, No SQL, Key
value, Query
Storage Engines, é

Raw Data Data Analysis:
Storage Stat, Data Mining,

ML

Data
Visualization
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Data Analysis Workflow

i ct
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Data Analysis Workflow

Preparation Data Mart
Storage

Raw Data Data Analysis:
Storage Stat, Data Mining,

ML

Data
Visualization

| nse .DATA INTEGRATION a DATA PROCESSING /i;\m g VISUALISATION

> ¢t PUBLICATION = JAUTOMATION

HTMLS5, java script,

Acquisition Tableau, Qlik, &

Page 16

dMaDEUS

© 2015 Amadeus IT Group SA



Data Analysis Workflow

shell commands Data model, OLAP,
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Data Analysis Important Skills

__Understanding of  business requirements  and audience
A To identify the data required to answer the business questions

A To evaluate and conduct the appropriate data analysis
technigues depending on the targeted audience @/

__Automation of data  preparation @

__Data analysis using statistics, machine learning, and data
mining techniques @/

__Creation of compelling and meaningful data visualization
and telling the  story @/

__Estimating the confidence level to the result of the analysis @/

l nserto
i cturebod
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Batch vs Real Time

ATraditionaIIy, data analysis are done in batch mode: daily ,
weekly , monthly , yearly

AOften times, analysis is only possible when the whole data
are available for analysis

ABig Data platform such as Hadoop or Spark are powerful
tools to do the batch data analysis in large scale

l nserto
i cturebod
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Batch vs Real Time

AMore and more companies look for accomplishing business
actions based on data in real time

AMore and more data are continuously generated, e.g. IOT

AFor the time constraint , It Is often not possible to process
the whole data

AA new set of techniques and algorithms are developed to
answer this real time requirement

l nserto
i cturebod
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Batch vs Real Time

__Streaming algorithms get popular to address the real time
constraint

__The algorithms make  trade -off between the time of
execution and precision

__ Examples:
A Bloom Filter
A Sketch -based Algorithms
A Hyperloglog
A Approximate histogram
Aé .
__ See Mining of Massive Datasets  (Leskovec , et.al. 2014) and
Data Streams Models and Algorithms (Aggarwal, 201)

l nserto
i cturebod
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Batch vs Real Time

__From architectural point of view: Lambda Architecture and
Kappa Architecture

__The architectures focus on how to combine the historical
data and newer data to answer the user query

__See Big Data (Nathan, 2015) and  Questioning the Lambda
Architecture (Kreps, 2014)

l nserto
i cturebod
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Use Cases
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Use Case 1: E -Commerce
Conversion Rate
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Use Case 1: E -Commerce Conversion Rate

_ Customer
AAirIines, E -Commerce department

Business Objective
~ Alncreasethe e -commerce revenue

Business Requirements

Alncrease conversion rate (the ratio of search / booking)

A Need to have insights on the performance of each product
proposed (e.g. Origin and Destination)

l nserto
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Use Case 1: E -Commerce Conversion Rate
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Use Case 1: E -Commerce Conversion Rate
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Use Case 1: E -Commerce Conversion Rate

Price position vs. Lowest price in %
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Use Case 1: E -Commerce Conversion Rate
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Use Case 1: E -Commerce Conversion Rate
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Use Case 1: E -Commerce Conversion Rate
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Use Case 1: E -Commerce Conversion Rate
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Use Case 1: E -Commerce Conversion Rate

Outlier List
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3.1.1

Outlier Analysis Iin 5 Slides
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Outlier Analysis

__For univariate and data following a normal distribution (or
assumed to be so):

A calculate the probability of the occurrence of such data
average of search=4500
standard deviation=1000
point to be checked has search count = 400
probability = 2.06 x 10 -5 => outlier

_ We might want to use the average of its group (e.g. average of
search for all O&D in blue )

l nserto
i cturebod
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Outlier Analysis

__Blue point is outlier, because:
A Its distance to the centroid of two other clusters are

l nserto
i cturebod

relatively far, or

A It is In a cluster of its own
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Outlier Analysis

AF performances: capacity share vs. traffic share
Source: OAG schedule , Amadeus Air Traffic - From 2013-01 to 2013-03
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__ X point is outlier, because:
A Its distance to the regression line is relatively far
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Outlier Analysis

__For the time series above, the green time series
contains an outlier because its distance to the
forecasted one is relatively fare
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