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@ An Adversarial Example tour
© How to attack a Deep Network?

© Towards an explanation of Adversarial Examples
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An Adversarial Example tour
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We did it!

e Deep Networks are as good as humans at recognition,
identification...

ILSVRC Top 5 Error on ImageNet

m o

25 —

M Deep Learning
20 —

B Human
10 —
5 I I
0 l l .

2010 2011 2012 2013 2014

Top-5 Error Rate (%)
&

Human 2015 2016

How much does a deep network understands those tasks?
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Why does it matter?

Google trends on "deep learning" keyword

@ Natural communication between humans and computer
(working together)

@ Preventing mistakes and establishing norms (autonomous
driving ...)
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An Adversarial Example tour
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Intriguing properties of neural networks
C. Szegedy, w. Zaremba, |. Sutskever, J. Bruna, D. Erhan, I.
Goodfellow, R. Fergus
arXiv preprint arXiv:1312.6199
2013

[1312.6199] Intriguing properties of neural networks - arXiv.org
https://arxiv.org > cs - Traduire cette page

de C Szegedy - 2013 - Cité 449 fois - Autres articles

21 déc. 2013 - In this paper we report two such properties. First, we ... Second, we find that deep neural
networks learn input-output mappings that are fairly ...
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A Simple Experiment: What we expected

Input s preclcfion
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Thisis aplang !
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A Simple Experiment: What really happened

Input Nefworks preaicion
backpopogaionfo | iy = ( chondngtre
modfy he piels S predcfon

Thisis aplang !
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Orienting mis-predictions

correct +distort  ostrich
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(YTYIY 1)

Pushing the "bouchon"
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[XIYIY YY)

Definition: Adversarial Example

Definition: X is called adversarial iff;

@ given image X
@ low distortion || x — X ||[< €, (e >0, few pixels)
@ given network’s probabilities fy(x)

e Different predictions! argmaxfy(x) # argmaxfy(X)
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Properties: Transferability

= outliers

regularization: correct one... find another

high confidence predictions

Transferability

Input Nefwork’s prediction
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changing
the network
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Attacks on different models

e CNNs are not robust to adversarial
e Adversarial Attacks:

@ RNNs (Crafting Adversarial Input Sequences for Recurrent Neural
Networks - N. Papernot, P. McDaniel, A. Swami, R. Harang; 2016)

@ Generative models (Adversarial Images for Variational Autoencoders -
P. Tabacof, J. Tavares, E. Valle; 2016 )

@ Reinforcement Learning (Adversarial Attacks on Neural Network
Policies - S. Huang, N. Papernot, |. Goodfellow, Y. Duan, P. Abbeel;
2017)

Curious about attacking video games? Videos are here :
http://rll.berkeley.edu/adversarial /
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How to attack a Deep Network?
°

First steps and GAN

Originally designed for crafting and training on adversarial examples
— Not the case, shown to be useful in other tasks
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How to attack a Deep Network?
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Fast Gradient Sign

e fast, but simple attacks
e used mostly for regularization

Input : Image x, Classifier fy, €
Prediction phase: Perturbed image X

1 y = argmaxyfp(x)

2 return x + esign(Vyxloss(fy(x),y)

. x +
r sign(Va J(0, 2, y)) esign(VzJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
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How to attack a Deep Network?
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A little bit of chemistry

e Defensive distillation - N. Papernot, P. McDaniel, X. Wu, S. Jha, A.
Swami; 2015

@ training a second network overconfident

@ trained with a smooth decision
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e But finally: Defensive Distillation is Not Robust to Adversarial
Examp/es - N. Carlini, D. Wagner; 2016
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How to attack a Deep Network?
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Gently Breaking Neural Networks

Towards Evaluating the Robustness of Neural Networks - N. Carlini,
D. Wagner; 2017

e Rethinking the initial optimization problem of adversarial
examples
e Defining 3 attacks:

@ L attack. Used by:

o Lo attack
o L., attack

e Low (Lo, L) to none (Ly) perceptible distortion
e Seems to always be able to find an adversarial example (Well,

maybe not so gentle...)
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Towards an explanation of Adversarial Examples

Is it the end of Deep Learning?
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Towards an explanation of Adversarial Examples
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Linearity of Deep Networks

e CNN : convolution + dense + relu = highly linear models

e How to fool a linear classifier in high dimension? Explaining and

harnessing Adv Examples

wik=wix+w'y (1)
@ w: n dimensions, average magnitude m
@ x=x+mn, n=cesign(w)

@ = Action growth of emn
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Towards an explanation of Adversarial Examples
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Gradient based validation?

Our experiment

B(X) = VGG 5(X)

4
50/50
y Is adversarial ?
Invalidate
hypothesis ) A I M 19 G E

Train different
& models

X = x + esign(Vloss(fy(x), y)

Adversarial
examples database

~
o e |
Gradient sign
representation /
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Towards an explanation of Adversarial Examples
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Manifold

Recent works tend to explain adversarial examples as examples
lying close to the manifold of training data

A Boundary Tilting Persepective on the Phenomenon of Adversarial
Examples - T. Tanay, L. Grifhn; 2016

\FGM attackl___uﬂ_ WA
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Towards an explanation of Adversarial Examples

The Space of Transferable Adversarial Examples

Adversarial space: contiguous, at least 2 dimensional. Dimension is

proportional to the ratio increase in loss / perturbation

Different models with similar class boundary distances

——————— Task decision boundary

Model 1 decision boundary

Model 2 decision boundary
Training points for class 1
Training points for class 2

x Test point for class 1

@ Test point for class 2

. Adversarial example for class 2
RAND
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Conclusion

e Adversarial examples are caused by a special kind of unnatural
noise

e Consider adversarial examples security depending on application
— Visit cleverhans

e Adversarial example study gives insights for Neural Network
understanding and improvements

e New trend: crafting an adversarial example detector

e Hence we're working on reassigning the original class to an

adversarial example



Good work - butr 1 think.
e might need a little
rmore detail right fere.
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