How to attack a Deep Network?

Towards an explanation of Adversarial Examples $_{\rm OOOOO}$

Fooling Deep Networks:

Generation, Explanation and Detection of Adversarial Attacks

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso

Laboratoire I3S - UNS CNRS UMR 7271

July 5, 2017

An Adversarial Example tour	How to attack a Deep Network?	Towards an explanation of Adversarial Examples

2 How to attack a Deep Network?

3 Towards an explanation of Adversarial Examples

An Adversarial Example tour	How to attack a Deep Network?	Towards an explanation of Adversarial Examples

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso Fooling Deep Networks

An Adversarial Example tour	How to attack a Deep Network?	Towards an explanation of Adversarial Examples
●००००००००	0000	00000
We did it!		

• Deep Networks are as good as humans at recognition, identification...

How much does a deep network understands those tasks?

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Why does it matter?

Google trends on "deep learning" keyword

- Natural communication between humans and computer (working together)
- Preventing mistakes and establishing norms (autonomous driving ...)

An Adversarial Example tour	How to attack a Deep Network?	Towards an explanation of Adversarial Examples
●●●0000000		

Intriguing properties of neural networks

C. Szegedy, w. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus arXiv preprint arXiv:1312.6199 2013

[1312.6199] Intriguing properties of neural networks - arXiv.org https://arxiv.org > cs - Traduire cette page de C Szegedy - 2013 - Cité 449 fois - Autres articles 21 déc. 2013 - In this paper we report two such properties. First, we ... Second, we find that deep neural networks learn input-output mappings that are fairly ...

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

A Simple Experiment: What we expected

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso

Fooling Deep Networks

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

A Simple Experiment: What really happened

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Orienting mis-predictions

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Pushing the "bouchon"

Confidence $\geq 96\%$

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso

Fooling Deep Networks

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Definition: Adversarial Example

Definition: \hat{x} is called adversarial iff:

- given image x
- low distortion $|| x \hat{x} || < \epsilon$, ($\epsilon > 0$, few pixels)
- given network's probabilities $f_{\theta}(x)$
- Different predictions! $argmax f_{\theta}(x) \neq argmax f_{\theta}(\hat{x})$

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Properties: Transferability

- \neq outliers
- regularization: correct one... find another
- high confidence predictions
- Transferability

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso

Fooling Deep Networks

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Attacks on different models

- CNNs are not robust to adversarial
- Adversarial Attacks:
 - RNNs (Crafting Adversarial Input Sequences for Recurrent Neural Networks - N. Papernot, P. McDaniel, A. Swami, R. Harang; 2016)
 - Generative models (Adversarial Images for Variational Autoencoders P. Tabacof, J. Tavares, E. Valle; 2016)
 - Reinforcement Learning (Adversarial Attacks on Neural Network Policies - S. Huang, N. Papernot, I. Goodfellow, Y. Duan, P. Abbeel; 2017)

Curious about attacking video games? Videos are here : http://rll.berkeley.edu/adversarial/

An Adversarial Example tour	How to attack a Deep Network?	Towards an explanation of Adversarial Examples

How to attack a Deep Network?

How to attack a Deep Network?

Towards an explanation of Adversarial Examples

First steps and GAN

Originally designed for crafting and training on adversarial examples

ightarrow Not the case, shown to be useful in other tasks

How to attack a Deep Network? ●●○○ Towards an explanation of Adversarial Examples 00000

Fast Gradient Sign

- fast, but simple attacks
- used mostly for regularization

Input : Image x, Classifier f_{θ} , ϵ

Prediction phase: Perturbed image \hat{x}

- 1 $y = argmax_k f_{\theta}(x)$
- 2 return $x + \epsilon sign(\nabla_x loss(f_{\theta}(x), y))$

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso Fooling Deep Networks

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

A little bit of chemistry

- *Defensive distillation* N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami; 2015
 - training a second network overconfident
 - trained with a smooth decision

• But finally: *Defensive Distillation is Not Robust to Adversarial Examples* - N. Carlini, D. Wagner; 2016

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso Fooling Deep Networks

How to attack a Deep Network?

Towards an explanation of Adversarial Examples 00000

Gently Breaking Neural Networks

Towards Evaluating the Robustness of Neural Networks - N. Carlini, D. Wagner; 2017

- Rethinking the initial optimization problem of adversarial examples
- Defining 3 attacks:

- Low (L₀, L_{∞}) to none (L₂) perceptible distortion
- Seems to always be able to find an adversarial example (Well, maybe not so gentle...)

How to attack a Deep Network?

Towards an explanation of Adversarial Examples $\circ\circ\circ\circ\circ$

Towards an explanation of Adversarial Examples

An Adversarial Example tour	How to attack a Deep Network?	Towards an explanation of Adversarial Examples
		00000

Is it the end of Deep Learning?

How to attack a Deep Network?

Towards an explanation of Adversarial Examples $\bullet \bullet \circ \circ \circ$

Linearity of Deep Networks

- CNN : convolution + dense + relu = highly linear models
- How to fool a linear classifier in high dimension? *Explaining and harnessing Adv Examples*

$$w^T \hat{x} = w^T x + w^T \eta \tag{1}$$

• w: n dimensions, average magnitude m

•
$$\hat{x} = x + \eta$$
, $\eta = \epsilon sign(w)$

• \Rightarrow Action growth of ϵmn

How to attack a Deep Network?

Towards an explanation of Adversarial Examples $\bullet \bullet \bullet \circ \circ$

Gradient based validation?

$\hat{x} = x + \epsilon sign(\nabla_x loss(f_{\theta}(x), y))$

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso Fooling Deep Networks

An	Adversarial	Example	tour
	00000000		

How to attack a Deep Network?

Towards an explanation of Adversarial Examples $\bullet\bullet\bullet\bullet\circ$

Manifold

Recent works tend to explain adversarial examples as examples lying close to the manifold of training data

A Boundary Tilting Persepective on the Phenomenon of Adversarial Examples - T. Tanay, L. Griffin; 2016

How to attack a Deep Network?

Towards an explanation of Adversarial Examples

The Space of Transferable Adversarial Examples

Adversarial space: contiguous, at least 2 dimensional. Dimension is proportional to the ratio increase in loss / perturbation

Different models with similar class boundary distances

Guillaume Debard, Mélanie Ducoffe, Frédéric Precioso

- Adversarial examples are caused by a special kind of unnatural noise
- Consider adversarial examples security depending on application
- \rightarrow Visit cleverhans
- Adversarial example study gives insights for Neural Network understanding and improvements
- New trend: crafting an adversarial example detector
- Hence we're working on reassigning the original class to an adversarial example

Any question?

