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We did it!

• Deep Networks are as good as humans at recognition,

identi�cation...

How much does a deep network understands those tasks?
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Why does it matter?

Google trends on "deep learning" keyword

Natural communication between humans and computer

(working together)

Preventing mistakes and establishing norms (autonomous

driving ...)
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Intriguing properties of neural networks

C. Szegedy, w. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.

Goodfellow, R. Fergus

arXiv preprint arXiv:1312.6199

2013
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A Simple Experiment: What we expected

Network's predictionInput

backpropagation to
modify the pixels

changing the 
prediction

" This is a car !"

"This is a plane !"
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A Simple Experiment: What really happened

Network's predictionInput

backpropagation to
modify the pixels

changing the 
prediction

" This is a car !"

"This is a plane !"
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Orienting mis-predictions
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Pushing the "bouchon"

Con�dence > 96%
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De�nition: Adversarial Example

De�nition: x̂ is called adversarial i�:

given image x

low distortion || x − x̂ ||< ε, (ε > 0, few pixels)

given network's probabilities fθ(x)

Di�erent predictions! argmaxfθ(x) 6= argmaxfθ(x̂)
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Properties: Transferability

• 6= outliers

• regularization: correct one... �nd another

• high con�dence predictions

• Transferability

Network's predictionInput

changing 
the network

"This is a plane !"

"This is a plane !"
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Attacks on di�erent models

• CNNs are not robust to adversarial

• Adversarial Attacks:

RNNs (Crafting Adversarial Input Sequences for Recurrent Neural

Networks - N. Papernot, P. McDaniel, A. Swami, R. Harang; 2016)

Generative models (Adversarial Images for Variational Autoencoders -

P. Tabacof, J. Tavares, E. Valle; 2016 )

Reinforcement Learning (Adversarial Attacks on Neural Network

Policies - S. Huang, N. Papernot, I. Goodfellow, Y. Duan, P. Abbeel;

2017)

Curious about attacking video games? Videos are here :

http://rll.berkeley.edu/adversarial/
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How to attack a Deep Network?
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First steps and GAN

Originally designed for crafting and training on adversarial examples

→ Not the case, shown to be useful in other tasks
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Fast Gradient Sign

• fast, but simple attacks

• used mostly for regularization

Input : Image x, Classi�er fθ, ε

Prediction phase: Perturbed image x̂

1 y = argmaxk fθ(x)

2 return x + εsign(Ox loss(fθ(x), y)
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A little bit of chemistry

• Defensive distillation - N. Papernot, P. McDaniel, X. Wu, S. Jha, A.

Swami; 2015

training a second network overcon�dent

trained with a smooth decision

• But �nally: Defensive Distillation is Not Robust to Adversarial

Examples - N. Carlini, D. Wagner; 2016
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Gently Breaking Neural Networks

Towards Evaluating the Robustness of Neural Networks - N. Carlini,

D. Wagner; 2017

• Rethinking the initial optimization problem of adversarial

examples

• De�ning 3 attacks:

L2 attack. Used by:

L0 attack

L∞ attack

• Low (L0, L∞) to none (L2) perceptible distortion

• Seems to always be able to �nd an adversarial example (Well,

maybe not so gentle...)
18/26

Guillaume Debard, Mélanie Duco�e, Frédéric Precioso Fooling Deep Networks



An Adversarial Example tour How to attack a Deep Network? Towards an explanation of Adversarial Examples

Towards an explanation of Adversarial

Examples
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Is it the end of Deep Learning?
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Linearity of Deep Networks

• CNN : convolution + dense + relu = highly linear models

• How to fool a linear classi�er in high dimension? Explaining and

harnessing Adv Examples

wT x̂ = wT x + wTη (1)

w : n dimensions, average magnitude m

x̂ = x + η, η = εsign(w)

⇒ Action growth of εmn
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Gradient based validation?

Our experiment

x̂ = x + εsign(Ox loss(fθ(x), y)
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Manifold

Recent works tend to explain adversarial examples as examples

lying close to the manifold of training data

A Boundary Tilting Persepective on the Phenomenon of Adversarial

Examples - T. Tanay, L. Gri�n; 2016
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The Space of Transferable Adversarial Examples

Adversarial space: contiguous, at least 2 dimensional. Dimension is

proportional to the ratio increase in loss / perturbation

Di�erent models with similar class boundary distances
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Conclusion

• Adversarial examples are caused by a special kind of unnatural

noise

• Consider adversarial examples security depending on application

→ Visit cleverhans

• Adversarial example study gives insights for Neural Network

understanding and improvements

• New trend: crafting an adversarial example detector

• Hence we're working on reassigning the original class to an

adversarial example



Any question?


	An Adversarial Example tour
	How to attack a Deep Network?
	Towards an explanation of Adversarial Examples
	Appendix

