Open
Source

= . SophiaConf dAMADEUS

Le cycle azuréen de conférences Open Source

by ll/"i TelecomValley
= Animateur Azuréen du Numérique

Anomaly Detection in airlines
schedules

Asmaa Fillatre
Data Scientist, Amadeus



AMADEUS PRESENTATION

1. IT company that develops business solutions for the travel and tourism industry
2. Operates globally in the travel and technology market
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Airline Schedules
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Airline schedules Flight
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Airline schedules data

= 110.000 daily flights
= One year = 40.150.000 flights

Airline code
Airline country

Aircraft code
Flight number Aircraft capacity
Departure time INIES
Arrival time
Aircraft type Aircrafts
Departure airport
Arrival airport

Airline code

Airport code
Airport name
Airport location
Longitude
latitude
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Motivations

1. The airline schedules contain many errors.
2. It is important to identify outliers prior to modelling and analysis.
3. Detect anomalies automatically

4. Overcome the issue of non prior knowledge (no ground truth)
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Anomalies examples (1)

= Airlines use wrong IATA airport codes
= Airlines missing

= Merger between two companies

" Flown distance much higher than aircraft
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Sudden grow in monthly Aircraft capacity for United Airlines
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Anomalies examples (2)

Capacity timeseries: Nice - Paris
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Unsupervised Anomaly detection

Goal: Process unlabelled data and detect anomalies
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Machine learning

* Labeled data
(normal/abnormal)

* Direct feedback
* Predict outcome/future

Supervised

* Some labelled data :

= Supervised learning +
additional unlabelled data

= Unsupervised learning +
additional labelled data

o labels Learning

* No feedback

* Find hidden

structure . .
Semisupervised
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Residuals-based anomaly detection in three steps
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Low-rank Residuals Anomal
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Residual and Anomaly Detection

= Residual
R; = Input — Reconstrucion

= Residual normalization
(R —w)
o

A

= Residual thresholding
Zi| >3
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Any data sample outside the interval [y — 30, u + 30]
is considered to be potential anomaly

—

99.7% of the data are within
3 standard deviations of the mean
95% within

2 standard deviations

68% within
<—— 1 standard —|
deviation

u—o u u+a u+ 20 u+ 30

Three sigma rule
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Deep learning: Stacked Autoencoder

Goal: Learn the internal structure and features of the data itself
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Autoencoder

One hidden layer
( 1 1
(wet ) (e

Minimize ||X — £|| w.r.t. all W@, w® and b, bP
) = Trained with Backpropagation
Self-supervised technique

Learn a meaningful representation of the data in some

other dimensionality

1

a; = f(2i) where f(z2)= 1 +6_Z,Vz e R
and z = b [i] + > wiVi, jla;
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Autoencoder
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Deep Autoencoder or stacked autoencoder
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Regularization

Sparsity Penality

= Constraints on the activation o= which should be close to p
= Regularization by 1
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Stacked Autoencoder training

Training one hidden layer at a time

Example with 2 hidden layer 3
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Hello world of deep learning

Anomaly Detection on MNIST
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Autoencoder based Anomaly detection
for airlines schedules
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Raw data: multivariate time series
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Preprocessing
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Autoencoder for time series — Anomaly detection

Data preparation

TS

preprocessing

Data
normalization f‘>

Testing set

W

Data transformation

Train
Autoencoder

4

]m

Reconstruction
error thresholding

Outlier detection
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Autoencoder
configuration
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= United Airlines (UA) schedules data
2l processing

Goal: highlight how does the Autoencoder perform in practice
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Normalized number of flights

UA anomaly detection (1)

World normalization of Input data
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Normalized number of flights

UA anomaly detection (2)

Regional normalization of Input data
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Air France (AF)

Goal: highlight how does the Autoencoder perform in practice
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Normalized number of flights
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AF anomaly detection (1)

World normalization of Input data
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Normalized number of flights

AF anomaly detection (1)

Regional normalization of Input data
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Autoencoder pros and cons

Pros cCons

Very good data
reconstruction

Flexible model
Non linear
model

Data structure ' |
mining ot comee
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Conclusion

= Unsupervised machine learning (no ground truth)
o Well adapted to the absence of labels

o Hard to interpret: the review process of outliers relies on domain experts

= Deep learning/feature engineering
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Thanks for your attention
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