

by TelecomValley Animateur Azuréen du Numérique

amadeus

Anomaly Detection in airlines schedules

Asmaa Fillatre Data Scientist, Amadeus

AMADEUS PRESENTATION

IT company that develops business solutions for the travel and tourism industry
Operates globally in the travel and technology market

Airline Schedules

Airline schedules data

Motivations

1. The airline schedules contain many errors.

2. It is important to identify outliers prior to modelling and analysis.

3. Detect anomalies automatically

4. Overcome the issue of non prior knowledge (no ground truth)

Anomalies examples (1)

- Airlines use wrong IATA airport codes
- Airlines missing
- Merger between two companies
- Flown distance much higher than aircraft average
- Elapsed time/distance not appropriate
- New routes traffic
- Sports event (OG, FIFA World Cup, etc)

Flown distance much higher than the aircraft average

Sudden grow in monthly Aircraft capacity for United Airlines

Anomalies examples (2)

Page 8

Unsupervised Anomaly detection

Goal: Process unlabelled data and detect anomalies

Machine learning

Residuals-based anomaly detection in three steps

Residual and Anomaly Detection

Residual

 $R_i =$ Input – Reconstruction

Residual normalization

$$Z_i = \frac{(R_i - \mu)}{\sigma}$$

Residual thresholding

$$|Z_i| > 3$$

Any data sample outside the interval $[\mu - 3\sigma, \mu + 3\sigma]$ is considered to be potential **anomaly**

Deep learning: Stacked Autoencoder

Goal: Learn the internal structure and features of the data itself

Autoencoder

One hidden layer

- Minimize $||X \hat{X}||$ w.r.t. all $W_e^{(\ell)}$, $W_d^{(\ell)}$ and $b_e^{(\ell)}$, $b_d^{(\ell)}$
- Trained with Backpropagation
- Self-supervised technique
- Learn a meaningful representation of the data in some other dimensionality

$$a_{i} = f(z_{i}) \text{ where } f(z) = \frac{1}{1 + e^{-z}}, \forall z \in \mathbb{R}$$

and $z_{i} = b_{e}^{(1)}[i] + \sum_{j=1}^{m} w_{e}^{(1)}[i, j] x_{j}$
 $\hat{x}_{i} = f\left(b_{d}^{(1)}[i] + \sum_{j=1}^{k} w_{d}^{(1)}[i, j] a_{j}\right)$

Deep Autoencoder or stacked autoencoder

- Constraints on the activation $\hat{\rho}$ which should be close to ρ
- Regularization by λ

Stacked Autoencoder training

Training one hidden layer at a time

Hello world of deep learning

Anomaly Detection on MNIST

7____

Autoencoder based Anomaly detection for airlines schedules

Raw data: multivariate time series

Autoencoder for time series – Anomaly detection

aMadeus

Goal: highlight how does the Autoencoder perform in practice

UA anomaly detection (1)

World normalization of Input data

UA anomaly detection (2)

Regional normalization of Input data

Min Max Normalization per region

Goal: highlight how does the Autoencoder perform in practice

AF anomaly detection (1)

AF anomaly detection (1)

Regional normalization of Input data

Min Max Normalization per region

Autoencoder pros and cons

Conclusion

• Unsupervised machine learning (no ground truth)

• Well adapted to the absence of labels

• Hard to interpret: the review process of outliers relies on domain experts

Deep learning/feature engineering

Thanks for your attention

