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Airline Schedules
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Airline schedules data
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 110.000 daily flights   
 One year = 40.150.000 flights

Flight number
Departure time
Arrival time
Aircraft type
Departure airport
Arrival airport
Airline code
……

Flight schedules

Airline code
Airline country

Airlines

Airport code
Airport name
Airport location
Longitude 
latitude

Airports

Aircraft code 
Aircraft capacity

Aircrafts
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1. The airline schedules contain many errors.

2. It is important to identify outliers prior to modelling and analysis.

3. Detect anomalies automatically

4. Overcome the issue of non prior knowledge (no ground truth)

Motivations
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 Airlines use wrong IATA airport codes

 Airlines missing

 Merger between two companies

 Flown distance much higher than aircraft 

average

 Elapsed time/distance not appropriate

 New routes traffic

 Sports event (OG, FIFA World Cup, etc)

 …

Flown distance much higher than the aircraft average

Sudden grow in monthly Aircraft capacity for United Airlines 

Anomalies examples (1)
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Anomalies examples (2)



Unsupervised Anomaly detection
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Goal: Process unlabelled data and detect anomalies
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Machine learning

Supervised

Unsupervised Semisupervised

• Labeled data 
(normal/abnormal)

• Direct feedback

• Predict outcome/future

• Some labelled data :

 Supervised learning + 
additional unlabelled data

 Unsupervised learning + 
additional labelled data

Learning• No labels 

• No feedback

• Find hidden 
structure
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Residuals-based anomaly detection in three steps

Input data
Low-rank

approximation
Residuals
generation

Anomaly
detection
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Three sigma rule

Residual and Anomaly Detection

 Residual

𝑅𝑖 = Input − Reconstrucion

 Residual normalization

𝑍𝑖 =
(𝑅𝑖 − 𝜇)

𝜎

 Residual thresholding

Any data sample outside the interval 𝜇 − 3𝜎, 𝜇 + 3𝜎
is considered to be potential anomaly



Deep learning: Stacked Autoencoder
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Goal: Learn the internal structure and features of the data itself
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 Minimize 𝑋 −  𝑋 w.r.t. all 𝑊𝑒
(ℓ)

,𝑊𝑑
(ℓ)

and 𝑏𝑒
(ℓ)

, 𝑏𝑑
(ℓ)

 Trained with Backpropagation

 Self-supervised technique

 Learn a meaningful representation of the data in some 

other dimensionality

One hidden layer

Autoencoder

where

Encoding Decoding

and
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Click ’Insert’ 

branding 

Align with bottom line 
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Introduce non linearity

PCA

Autoencoder
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Click ’Insert’ 

branding 

Align with bottom line 

Cost function

Deep Autoencoder or stacked autoencoder

 Constraints on the activation  𝜌 which should be close to 𝜌

 Regularization by 𝜆

Average sum of squared error

Weight decay

Sparsity PenalityR
e
g
u
la

ri
z
a
ti
o
n



Page  17

Click ’Insert’ 

branding 

Align with bottom line 

Training one hidden layer at a time

Stacked Autoencoder training

Example with 2 hidden layer
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Anomaly Detection on MNIST

Hello world of deep learning 

Autoencoder

highest reconstruction 
error

lowest reconstruction 
error

In
p
u
t 

im
a
g
e
s

Output images
Learned 
features



Autoencoder based Anomaly detection 
for airlines schedules
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Raw data: multivariate time series

Some region to region time series 2012 week 10

 For more natural 

representations of data

 The Autoencoder can 

learn some patterns

N
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Preprocessing

nb
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Autoencoder for time series – Anomaly detection

Data preparation 

175

100

50

175

100

Autoencoder
configuration

+ 𝛽, 𝜆 𝑎𝑛𝑑 𝜌

Train 
Autoencoder

TS 
preprocessing

Data 
normalization

Testing set

Training 
set

Reconstruction 
error thresholding

W, B

Outlier detection

Data transformation 



Click ’Insert’ 

branding 

Align with bottom line 

United Airlines (UA) schedules data 
processing
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Goal: highlight how does the Autoencoder perform in practice
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World normalization of Input data

UA anomaly detection (1)

Autoencoder

2010 to 2016 
Input from UA 

Output

-
Residuals

….
….

World Min Max Normalization

R2Ri
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Regional normalization of Input data

UA anomaly detection (2)

Autoencoder

Output

-
Residuals

….

2010 to 2016 
Input from UA 

….R2Ri

Min Max Normalization per region



Click ’Insert’ 

branding 

Align with bottom line 

Air France (AF)
8

Goal: highlight how does the Autoencoder perform in practice
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World normalization of Input data

AF anomaly detection (1)

Autoencoder

2010 to 2016 
Input from AF 

Output

-
Residuals

….
….

World Min Max Normalization

R2Ri
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Regional normalization of Input data

AF anomaly detection (1)

Autoencoder

Output

-
Residuals

….

….R2Ri

Min Max Normalization per region

2010 to 2016 
Input from AF 
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Autoencoder pros and cons

Pros Cons
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Click ’Insert’ 

branding 

Align with bottom line 

 Unsupervised machine learning (no ground truth)

oWell adapted to the absence of labels

oHard to interpret: the review process of outliers relies on domain experts

 Deep learning/feature engineering

Conclusion



Thanks for your attention 


