
Language Identification 
for (very) short texts

Alcméon



It’s a solved problem
“Written language identification is regarded as a fairly easy problem”

“N-gram-based text categorization”, Cavnar, William B., and John M. Trenkle, 1994

“Statistical identification of language”, Dunning, Ted, 1994.

“Language identifier: A computer program for automatic natural-language 

identification of on-line text”, Beesley, Kenneth R, 1998.



Practical Open Source Solutions
https://github.com/optimaize/language-detector

● 71 languages covered

● Apache licence

● Java-based

https://github.com/peterc/whatlanguage

● 19 languages covered

● MIT licence

● Ruby-based

Many others...

https://github.com/optimaize/language-detector
https://github.com/optimaize/language-detector
https://github.com/peterc/whatlanguage
https://github.com/peterc/whatlanguage


But, ...

“This software does not work as well when the input text to analyze is short, or 

unclean. For example tweets.”

“It works [...] very poorly on short or Twitter-esque text”



How do these things work ?
1. For language reference corpus, generate n-gram distribution, keep k 

most-frequent n-grams

2. For new unknown text, generate n-gram distribution

3. Calculate out-of-place distance to each reference language distribution

4. Choose “closest” reference language distribution



Reference n-gram distributions



“Tkt toi ?” ngrams



“Tkt toi ?” out-of-place distance
English 87300

Dutch 87541

French 87553

Italian 87753

German 87926

Spanish 88444

Russian 88845

Arabic 90000



Summary

N-gram distributions are very coarse on short text

SMS-speak n-gram distributions are very strange



But it’s a classification problem !
Input features: ngram counts

Output class: language

Training+test data: twitter sample stream :)

Algorithms: Naive Bayes + kbest/chi2

Implementation: scikit-learn

Download the code: https://github.com/mathieu-lacage/sophiaconf2017



Prepare the data
1. Download the data:

a. Create a twitter app (https://app.twitter.com)

b. Generate access tokens

c. Run twitter-data.py for a while

2. Preprocess tweets

a. Run preprocess.py

3. Extract features:

a. Run extract-features.py

4. Output:

a. X.mtx, y.npy, y-textcat.npy

b. classes.json, features.json

https://app.twitter.com


Generate a dumb model
X = io.mmread('X.mtx')

y = numpy.load('y.npy')

select = SelectKBest(chi2, k = 1000)

classifier = MultinomialNB()

classifier = Pipeline([('kbest', kbest), ('nb', nb)])

classifier.fit(X, y)

joblib.dump(classifier, 'model.pkl')



Predict “tkt toi ?”
vector = [0] * len(features_by_name)

ngrams = Ngrams.generate(content)

for ngram, count in ngrams:

    if ngram in features_by_name:

        vector[self._features_by_name[ngram]] = count

x = numpy.array([vector])

pred = model.predict(x)

print classes_by_id[pred[0]]



Search for the right k
for k in range(50, 15000, 50):

classifier = Utils.kbest_naive_bayes(k)

scores = cross_val_score(classifier, X, y)

print k, scores.mean()
Overfitting !



What is missing for a production solution
1. More data

2. Better data (review twitter ground truth)

3. More languages

4. Check language class imbalance

5. Boost short messages

6. Test other classifiers, other feature selection criteria

7. Exploit more features (author profile lang)

8. Embed in a microservice



Summary
TextCat: 4% error rate

Dumbest possible classifier: 1% error rate

You will do much better with real data

We are hiring :)



Questions ?


