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The Speakers
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_ Data Engineers @ Amadeus
* Big-Data products
* Data Mesh architecture
* Machine Learning dev-ops
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Agenda

_Machine Learning in real life
~ MLflow
_ Pyntel
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MIL is everywhere!

_ ML is reshaping businesses and our daily life

* Price prediction

* SPAM detection

* Product recommendation
* Fraud detection

* Voice recognition

* Chat bots

* Autonomous driving
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" ML development is harder than
traditional SW development gy

Matei Zaharia
Author of Apache Spark and MLflow
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SW development ML development

Meet a functional specification Optimize a metric (e.g. accuracy)

Depends mostly on input data

Dependsionlylon code and tuning parameters

Combine many library and

Defined SW stack for a given task frameworks for the same task
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VIL lifecycle
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Model governance
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Model exchange

Deployment
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mlflow

_ Open source platform for the ML lifecycle
* Works with most ML framework

* Works with any programming languages

* Scales to Big Data with Apache Spark

~ Some of the users...
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Tracking

mlflow

Projects

Registry

Models
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MLflow
Tracking
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_ APl (Python, REST, R, Java) and Ul for logging and querying

* parameters
* code version
°* metrics

_ Analyse and compare results
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M Lflow

Projects

code

\_

/mlflo

Project

config
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remote execution

_ packaging data science code in a reusable and reproducible way

_ composing projects
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MLflow
Model Registry
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ci/cd tools
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Model Registry
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_manage the full lifecycle of a model

_model lineage
_ model versioning

_ stage transitioning
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MLflow
Models
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ML Frameworks \ \ A / / Serving Tools

_ serialization and packaging format for ML Models

N/

_defines model dependencies
_ save models from any framework in MLflow format

_deployment APIs
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MIflow Model

Limitations

_ Model serving through REST API

* No swagger grammar

_ Open model serving
* No gRPC grammar
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Pyntel

Overview

_ Python library
_ Extends MLflow Models

_ Model signature generation
* Swagger grammar
* gRPC schema

_ Enrich the model with cloud provider metadata
e experiment id, subscription, resource group, runld

~ Validators
* prediction validation
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Conclusions

_Machine Learning in production
_ Overview on Mlflow components

_ Pyntel
* Contribution to MLflow planned
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