
New GPIO interface for
linux user space
SophiaConf 2021
Bartosz Golaszewski

About us
● Embedded Linux Engineering Firm
● ~30 senior engineers, coming from the semiconductor world
● HW and SW products: from concept to manufacturing
● Upstream Linux kernel development and maintenance
● Founding developers of kernelCI.org project

About me
● 10 years experience
● Kernel and user-space developer
● Maintainer of the linux kernel GPIO sub-system and libgpiod

2

Agenda
1. What are GPIOs?
2. GPIO sub-system in the kernel
3. Interacting with GPIOs from user-space
4. libgpiod

a. What is it and what it improves
b. Examples
c. Bindings
d. Future

3

GPIO – overview
● General-purpose input/output

● Generic pin

● Can be configured at run time
− Input (readable)/output (writable)
− Enabled/disabled
− IRQs

● Provided by SoCs, expanders or multifunction devices (I2C, SPI, ...)

4

GPIO in the kernel
● Provider-consumer model

● Two co-existing interfaces
− Based on GPIO numbers (legacy, deprecated)
− Based on GPIO descriptors (recommended)

● Easy access to GPIOs associated with devices
● More fine-grained control

● GPIO chip drivers in drivers/gpio

● Consumers all over the place
− Writing drivers for devices using GPIOs is encouraged wherever

possible

5

GPIO in user space
● Needed when no kernel device drivers provided/possible

− Power switches
− Relays
− GPS
− Bluetooth

● Certain users prefer to toggle GPIOs from user space
− Intelligent home systems
− Robotics

6

/sys/class/gpio – legacy user API
● d8f388d8 (“gpio: sysfs interface”)

● State not tied to process
− Concurrent access to sysfs attributes
− If process crashes, the GPIOs remain exported

● Cumbersome API
− Multiple attributes per GPIO: value, direction, active_low, edge
− Single sequence of GPIO numbers representing a two-level

hierarchy - necessary to calculate the number of the GPIO,
numbers not stable

− Polling possible but complicated: need to lseek() or reopen ‘value’
on events, need to open ‘value’ separately for every GPIO

7

Character device – new user API
● Merged in linux v4.8

● One device file per gpiochip
− /dev/gpiochip0, /dev/gpiochip1, /dev/gpiochipX…

● Similar to other kernel interfaces: open() + ioctl() + poll() + read() +
close()

● Possible to request multiple lines at once (for reading/setting values)

● Possible to find GPIO lines and chips by name

● Open-source and open-drain flags

● User/consumer strings

● Uevents & reliable polling

8

Character device v2 – even newer user API
● “Plan to throw one away”
● Merged in linux v5.10
● Future-proof
● Per line config

● Line attributes overloading

● Edge detection decoupled from direction

● Bias flags, debounce period, event clock type

● Sequence numbers for events

● List status changes monitoring

9

Character device – user API (linux/gpio.h)
● Chip info

● Line info

● Line request for values

● Reading values

● Setting values

● Line request for events

● Polling for events

● Reading events

10

libgpiod – C library & tools for GPIO chardev
● History

− Needed a solution for toggling power switches on BayLibre ACME
● IIO attributes
● Regulators controlled from user space
● GPIO character device

− Version 0.1 released on January 18th 2017
− v1.0 released on February 7th 2018
− Current stable version is 1.6.3
− v2.0 coming soon

11

libgpiod – C library & tools for GPIO chardev
● Features

− C API, fully documented in doxygen
− Command-line tools: gpiodetect, gpioinfo, gpioset, gpioget,

gpiofind & gpiomon (gpiowatch coming soon)
− Custom test suite (working together with gpio-mockup kernel

module and irq_sim)
■ Soon switching to gpio-sim

− C++ bindings
− Python 3 bindings

12

libgpiod tools - examples

$ gpiodetect
gpiochip0 [gpio-mockup-A] (8 lines)
gpiochip1 [gpio-mockup-B] (8 lines)
gpiochip2 [gpio-mockup-C] (8 lines)

$ gpioinfo gpiochip1
gpiochip1 - 8 lines:

line 0: "gpio-mockup-B-0" unused output active-high
line 1: "gpio-mockup-B-1" unused output active-high
line 2: "gpio-mockup-B-2" unused output active-high
line 3: "gpio-mockup-B-3" unused output active-high
line 4: "gpio-mockup-B-4" unused output active-high
line 5: "gpio-mockup-B-5" unused output active-high
line 6: "gpio-mockup-B-6" unused output active-high
line 7: "gpio-mockup-B-7" unused output active-high

13

libgpiod tools - examples
$ gpiofind gpio-mockup-B-3
gpiochip1 3

$ gpioget `gpiofind gpio-mockup-B-3`
0

$ gpioset gpiochip1 3=1
$ gpioget gpiochip1 1 2 3 4 5
0 0 1 0 0

$ gpioset --mode=wait gpiochip2 0=1

$ gpiomon gpiochip0 2
event: RISING EDGE offset: 2 timestamp: [1508094667.935877214]

$ gpiomon --format="%o %e %s.%n" gpiochip0 2
2 1 1508094729.895930484

14

libgpiod – C++ bindings
● C API wrapped in C++17 classes

● RAII

● Fully documented in Doxygen

● Exception-safe

● Tools reimplemented in C++ as an example

● Many examples included

15

libgpiod – Python 3 bindings
● C API wrapped in a set of Python 3 classes

● Fully documented in pydoc

● Native Python3 module written in C

● Tools reimplemented in Python as an example

● Many examples included

16

libgpiod – dbus bindings (coming soon)
● Work-in-progress

● git@github.com:brgl/libgpiod.git topic/gpio-dbus

● Daemon written in C and based on GDBus and Gudev

● Chip and line objects

● Properties: name, label, offset etc.

● Methods: request, set_value, get_value etc.

● Signals: line events

17

mailto:git@github.com

libgpiod – future
● v2.0 coming soon
● entirely reworked C API

○ intuitive line config
○ GPIO chips and requests are decoupled

● reworked language bindings
● rust bindings
● glib bindings

18

libgpiod – C library & tools for GPIO chardev
● Where to get it:

− Hosted at kernel.org
● Source:

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/
● Releases: https://www.kernel.org/pub/software/libs/libgpiod/

− Available in meta-openembedded & buildroot
− Packaged in Fedora, Arch, Debian linux and more

● Contributions & bug reports:
− Send e-mails to linux-gpio@vger.kernel.org
− Use [libgpiod] prefix

19

Q & A

THANK YOU!

20

