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Arm Provides Compute

23Bn

Arm-based
chips shipped
in 2018
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> 5Bn

people using
Arm-based
mobile phones

146Bn

Arm-based
chips to date
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Présentateur
Commentaires de présentation
We shipped 23 billion Arm chips in 2018, for a planet of 7.5 billion people. Arm plays a defining role in humanity's compute and communication infrastructure and it's a responsibility we take very seriously.

I’m part of Arm's Research group and it’s our job to look at both compute workloads and compute hardware. Ideally the two should match! If there's one thing this planet doesn't need it's a trillion devices with wasted cycles!


Neural Networks as Software 2.0

A fundamental
shift in how we
write software

Program is learned
rather than written

Training compiles Weights execute as
data directly into a computational
weights graph
Andrej Karpathy Pete Warden
Director of Al at Tesla TensorFlow Engineer at Google
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The biggest shift in compute at the moment is neural networks. I don't see these as just another popular workload.
1. They represent a fundamental shift in how we write software.
2. Differentiable programming makes it practical to learn a program or function instead of hand-crafting one.
3. From this perspective, the training process is really compiling the data into parameters.
4. These are then executed as a computational graph. And this has a lot of benefits:
* Fixed, predictable runtime
* Fixed, predictable memory usage - with no leaks
* Very little conditional computation - avoids branch prediction and huge multi-level caches


Software 2.0 is Surprisingly Adaptable

10x reduction in model size with
95.7MB 1% accuracy loss on Inception v3
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But one of the cooles things about NN as software is you can squish them down and run them on an entirely different platform.
Can you imagine how much work it would be to run Microsoft PowerPoint on a 640KB microcontroller?
Now, I was brought up believing 640KB should be enough for anybody, but that would be hundreds of man-years of work.
With neural networks, you can take a datacenter-class program like Inception v3 and do some automated magic and out pops a new program 10x smaller!



Achieving Trillions of Operations-per-Second

on a Mobile Platform
Reduced FP32 to 4x
precision INT8 throughput
Exploit Convolution
DEICRRING reuse .
: filters
weights
Reduce Better
Weight memory bandwidth
@ compression footprint and power
Winograd ~ 5

RelLU Pruning
activation techniques
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We’ve done a lot of work on this in the past and this all exists in products that are released or soon-to-be-released today.
The observant of you will have noticed that 10MB is not 640k – so where’s the next 10x going to come from?



TinyML Hardware Trends

Low-power general purpose cores and SoCs
- Wide (vector) registers to support machine learning workloads

_— Amortize front-end overhead

« Dot-product and matrix multiply ops -_—

NPU

Key operation in all neural networks

Recent research shows minimal

- Hardware support for lower precision (<=4b) operations *
- Hardware support for sparsity/zero-skipping
- Hardware support for compression of weights and activations

Analog & Compute-in-memory
- First commercial products appearing
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accuracy loss with 4b

RelLU activation and weight
sparsity

Bandwidth bottleneck, esp. FC
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SpArSe: Sparse Architecture Search for CNNs on Resource-
Constrained Microcontrollers

* Microcontrollers are small, ubiquitous  =rerrrrry TR
processors: e N i b L LA
- At the heart of the Internet of Things Caplors P (A CPU) 6] bl WCOPY/Sc  1GB LGN
° lelted RAM and ROM —as ||tt|e as 105 Of KB Arduino Uno (Microchip MCU) [1] IoT 4 MOPsSec 2 KB ~1mW §1.14

« We want to find CNN designs that: 0 Charsih
- Fit on microcontrollers 0.7 /_
- Deliver state-of-the-art accuracy R ittt St it~k

aﬂ.E

* The SpArSe framework: TP st S
- Combines network architecture search and network pruning %03 — Shrse sage 2
- Multi-objective Bayesian optimizer generates configurations 0.2 ? E'E::*:::m“
- Finds highly accurate neural net models with significantly 0 S et

fewer parameters 10° 10 100 1o 10°

Number of parameters

- Presented at NeurlPS 2019 in Vancouver, Canada https://arxiv.org /abs/1905.12107
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Présentateur
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This research by our group extends the idea of neural architecture search – using ML to design ML – to efficiently find optimal designs for resource-constrained networks.
This approach focuses on making the software workload fit the hardware platform. 
More speculatively, what might this trend look like taken to its logical extreme?


https://arxiv.org/abs/1905.12107

How Can We Improve Performance/Power/Area Further?
DeepFreeze: A hardware-generating backend for TensorFlow

NN model in TensorFlow

Specified layers or
whole model
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https://github.com/ARM-software/DeepFreeze

Hardware accelerator in Verilog

Memory Always-on
Block
' Cortex-M
Processor
Embedded

AnaloglP Regulator Flash

I/0cells

ASIC

FPGA


Présentateur
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What if, instead of compiling the data down to a computational graph of matrix multiplications, we went even further and compiled it directly down to silicon?
Last year my colleagues explored exactly that.

https://github.com/ARM-software/DeepFreeze

How Can We Improve Performance/Power/Area Further?

FixyNN: Leveraging Transfer Learning for Ultra-Efficient Hardware

Task Specific CNN Back-End

I Task N I
S © Perception architecture such as MobileNet on a _Shared FroneEnd T _Taskz
wide range of images : Shared I Task 1 X :
1 | 1
. . 1. . . - zl la zllol! Izl ]o ollollt
e Implement first K layers in silicon with fixed = —HEH3I - 1BHoF—HEHo | |o HE > “cAT
ights et =l 1eHELY el |El | s
weig el | -
o o e o o o - b oo o o o o o o iy - —
' Weights Hard-Coded Weights Stored \
. . . pe Fixed Datapath DRAM
e Remaining N-K network layers for specific task /" in Foed Datapa " :
,' FixyNN Hardware "
I
| Fully-Parallel
“ Fully-Pipelined DRAM Memory
e Task-specific part on programmable accelerator \  Zero DRAM BW 3
‘\ SRAM Memory SRAM Memory
. ‘ Fixed
—— - -
e Higher throughput and lower power compared Feature Extractor Cﬁgg/:i:;ﬁ?::gr
to a fully-programmable accelerator (FFE)
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Our FixyNN research explored the implications of compiling a pretrained neural network with fixed weights to a single functional block of IP. In theory this should have higher performance than running on a programmable accelerator!



FixyNN Evaluation Results

* Energy efficiency of up to 11.2 TOPS/W
with <1% accuracy loss — nearly 2 X
more efficient than NVDLA alone in

Sdame area
- ~1.5x TOPS/W by fixing 4 layers
- ~2x TOPS/W by fixing 7 layers
- Accuracy loss of < 1% over six datasets

i
i
€
¥ |
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CIFARlDO CIFAR10 GTSR FGVC-Aircraft
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Dlverse Specialized
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Baseline

FixyNN

VS
3mm? Area
1.0
0.8 1
>
§ 0.6
S
O
< 0.4 7
0.2 1
0.0 -
C100 C10 Airc Flwr SVHN GTSR
Dataset
== (O fixed layers 4 fixed layers == 7 fixed layers == 11 fixed layers

P. Whatmough, C. Zhou, P. Hansen, S. Venkataramanaiah, J. Seo, M. Mattina,

“FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning,” a r m

2019 Conference on Systems and Machine Learning (SysML ‘19)


Présentateur
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And indeed this is what we found. [Details: Mobilenet (V1) on a 16nm process trained on ImageNet, assume 50% sparsity]
Now, arguably fixed-function IP is a lot less valuable than programmable IP in, say, a mobile phone that runs a lot of applications the hardware creators couldn’t even dream about. But in the embedded world it’s common to have IP that only ever runs one program for its entire lifespan.
Moreover, the team showed good results with transfer learning, allowing a small programmable unit to utilize the fixed-function block on datasets it was never trained on.
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Recent Publications from Arm ML Research Lab
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Présentateur
Commentaires de présentation
There’s not enough time today to share all the topics we’re researching. Arm’s secret weapon is its ecosystem and our open and supportive relationship with it. We don’t build hardware, our partners do. This means most of our research can be done in the open, collaborating with top universities and presenting at top conferences.

I. Fedorov, R. Adams, M. Mattina, P. Whatmough “SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers” (NeurIPS ‘19)
Z. Liu, M. Mattina, “Learning low-precision neural networks without Straight-Through Estimator(STE)” (IJCAI ‘19)
D. Gope, G. Dasika, M. Mattina, “Ternary Hybrid Neural-Tree Networks for Highly Constrained IoT Applications,” 2019 Conference on Systems and Machine Learning (SysML ‘19)
P. Whatmough, C. Zhou, P. Hansen, S. Venkataramanaiah, J. Seo, M. Mattina, “FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning,” 2019 Conference on Systems and Machine Learning (SysML ‘19)
U. Thakker, J. Beu, G. Dasika, M. Mattina, “Measuring scheduling efficiency of RNNs for NLP Applications,” International Workshop on Performance Analysis of Machine Learning Systems (FastPath ’19)
U. Thakker, J. Beu, D. Gope, G. Dasika, M. Mattina, “RNN Compression using Hybrid Matrix Decomposition,” (tinyML Summit ’19)
P. Maji, A. Mundy, G. Dasika, J. Beu, M. Mattina, R. Mullins, “Efficient Winograd or Cook-Toom Convolution Kernel Implementation on Widely Used Mobile CPUs,” Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC^2 ‘19)
P. Whatmough, C. Zhou, P. Hansen, M. Mattina, “Energy Efficient Hardware for On-Device CNN Inference via Transfer Learning”, On-Device ML Workshop, Neural Information Processing Systems (NeurIPS ‘18)
Y. Zhu, A. Samajdar, M. Mattina, P. Whatmough, “Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous Vision”, International Symposium on Computer Architecture (ISCA’18)
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