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e Financial Cost
e Environmental Cost
e Latency

e Companies Sovereignty
e User Privacy (GDPR)
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REVOLUTIONIZING Al WITH COMPUTE-TO-DATA

Data Scientist

manta

e Local Processing

e Empowered Embedded Devices:
Modern autonomous systems, including
vehicles, leverage enhanced onboard
computing power.

e Collaborative Algorithms:
Harnessing decentralized and federated
learning to enable real-time collaboration
across devices.
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HOW TO TRAIN A MODEL ON DECENTRALIZED DATA: FEDERATED LEARNING
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FROM SILO TO DEVICES: THE DIFFERENT DECENTRALIZED SETTINGS

Characteristics of Cross-Device FL:

e Large number of clients (devices)

e Limited computational resources per device

e Potential for variability in device availability and
network connectivity
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<> THE CHALLENGES OF COMPUTE-TO-DATA

manta

Algorithmic Customization in Federated MLOps at the Edge: From Prototyping to
Learning: Production
e Handling heterogeneous and non-IID data e Managing heterogeneous systems

distributions.
e Orchestrating availability based on device

e Designing lightweight Al models for states.

resource-constrained devices (frugal Al).
e Ensuring secure computations,

e Optimizing communications: reducing model communication, and data traceability.

size and adjusting frequency of updates.
e Scaling decentralized computations and

e Ensuring privacy and protection against communications across platforms and
reverse attacks from model parameters. protocols.

e Transitioning Machine Learning innovations e Supporting flexibility for continuous
into Federated Learning (e.qg., AutoML, ethical innovation and DevOps in algorithm

Al). deployment.



é} DEPLOY SOVEREIGN, SECURE, AND COST-EFFECTIVE Al SOLUTIONS
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e Built-In Security
e Data Sovereignty
e Cost Optimization
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MANTA: SEAMLESS Al LIFECYCLE FROM PROTOTYPE TO PRODUCTION
@ Set Up your servers @ Connect your embedded devices

Server

(Momager)

Devices (Wodes)

e Optimize every stage of the Al
lifecycle

e Reduced Latency for real-time datao
processing

@ Deploy your algorithms @ Monitor your results
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$ MANTA: DEPLOY YOUR DECENTRALIZED AND COLLABORATIVE ALGORITHMS
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MANTA: DEVELOP YOUR MODULES
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TODAY'S DEMO: FEDERATED LEARNING ON YOUR COMPUTERS !




HUGO MIRALLES

CO-FOUNDER
m www.linkedin.com/in/hugo-miralles

BENJAMIN BOURBON
CO-FOUNDER

m www.linkedin.com/in/benjamin-bourbon

1 hugomiralles@manta-tech.io 1) benjaminbourbon@manta-tech.io

+33 659 96 27 85 +33 6 47 35 88 08
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. Let’s try Federated Learning with Manta!

manta
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MANTA ROADMAP: FROM INNOVATION TO MARKET IMPACT
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MARKET: NAVIGATING COMPETITIVE WATERS
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